开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Shilin Dai
Enzymes are powerful natural biological catalysts with numerous uses in the culinary, medicinal, agricultural, and environmental industries. However, the most difficult obstacles preventing biocatalytic systems from being used in industry are their ineffective recovery, reusability, and expensive soluble form of enzymes. Immobilization looks to be a great method for improving the stability and catalytic effectiveness of enzymes, as well as permitting their separation and reusability in continuous reaction batches, in order to address these deficiencies. Due to their significant surface area, higher surface-to-volume ratio, modifiable surface, and adjustable surface particle size, stability, and high mass transferring ability, magnetic nanomaterials have attracted the most attention among other nanostructures as support matrices for immobilising biomolecules and enzymes. They can also be rapidly healed from and the synthesis of artificial benzylisoquinoline alkaloid, butanol production, lignocellulosic biomass hydrolysis, glucose monitoring, fruit juice extraction and clarifying, and so on are thoroughly examined with illustrative examples. Finally, the summary and potential directions in this developing field are also addressed.