国际标准期刊号: 2155-9872

分析与生物分析技术杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Engineering Methylotrophic Yeasts for Biotechnology Applications

Dr. Hann Clara

Background: Because some yeast has evolved a methylotrophic lifestyle, they can use the single-carbon molecule methanol as a source of carbon and energy. Pichia pastoris (also known as Komagataella sp.) is one of them and is commonly employed for the generation of heterologous proteins as well as a model organism for organelle research. Our present understanding of the methylotrophic lifestyle is primarily based on extensive biochemical investigations that discovered numerous important methanol utilisation enzymes and their localization to the peroxisomes, including alcohol oxidase and dihydroxyacetone synthase. The pentose phosphate pathway is thought to be involved in C1 assimilation, but the specifics of these events are not yet understood.

Results: In this study, we compared the development of P. pastoris on a medium containing equal amounts of methanol and glycerol and glucose, as well as the regulation patterns of 5,354 genes, 575 proteins, 141 metabolites, and fluxes through 39 processes. We discovered that the whole methanol absorption mechanism is restricted to peroxisomes as opposed to using a portion of the cytosolic pentose phosphate pathway for xylulose-5-phosphate regeneration, as was previously thought. P. pastoris (and perhaps other methylotrophic yeasts) have developed a duplicated set of methanol-inducible enzymes that are specific to peroxisomes for this purpose. Sedoheptulose-1,7- bisphosphate is used as an intermediary in this compartmentalised cyclic C1 assimilation mechanism known as the xylose-monophosphate cycle. The high demand for their respective cofactors, riboflavin, thiamine, nicotinamide, and heme, caused by the strong induction of alcohol oxidase, dihydroxyacetone synthase, formaldehyde and formate dehydrogenase, and catalase, is reflected in the strong up-regulation of the corresponding synthesis pathways on methanol. Because of the high outflow towards methanol metabolic enzymes and their cofactors, methanol-grown cells contain more protein but fewer free amino acids. This illustrates an enhanced flow towards amino acid and protein synthesis and is also reflected in increased amounts of transcripts and/or proteins relevant to ribosome biogenesis and translation when taken in conjunction with up-regulation of several amino acid biosynthesis genes or proteins.

Conclusions: When taken as a whole, our study demonstrates how coordinated analysis of data from different systems biology levels can help reveal as-yet-unknown cellular pathways and completely change how we think about cellular biology.