国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Enhanced Degradation of Benzo[α]Pyrene in Coal Tar Contaminated Soils Using Biodiesel

Oriaku TO and Jones DM

The biodegradation of the potent carcinogen, benzo[a]pyrene (BaP), and other priority pollutants was investigated in un-weathered coal tar contaminated soil over a period of 150 days. Results from the laboratory microcosm experiments showed that after 60 days, the concentrations of BaP were significantly reduced by 81%, in the biodiesel amended samples compared to the 26% and 34% depletion in the control and nutrient-only amended microcosms, respectively. The 3-ring PAH anthracene was also almost completely biodegraded in the presence of biodiesel. However, phenanthrene degradation was significantly inhibited in these samples as only 3% reduction occurred as opposed to the 80% depletion observed in the control. A stepwise treatment approach conducted on the coal tar spiked soil also revealed a higher reduction in BaP (98%) in the biodiesel amended microcosms compared to the control (29%) and further enhanced the depletion of phenanthrene by 51% after 60 days of adding biodiesel to soil initially treated with nutrients. Toxicity assays showed that biodiesel amended microcosms stimulated phosphatase enzyme activity and exhibited a lower toxic response to Microtox Vibrio fischeri. Overall, the pattern observed in the removal of the PAHs using biodiesel, suggests the co-metabolic action of ligninolytic fungi, probably via lignin peroxidases, as also evidenced from the visible growth of moulds after 14 days of amendment. The enhanced removal of carcinogenic PAH and the reduced toxicity observed in soil after biodiesel amendment, indicates that this bioremediation technique has potential for full scale field trials.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。