国际标准期刊号: 2161-0681

临床与实验病理学杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Enhancing the Quality of Dental Radiographic Images: A Review on Panoramic and Periapical Radiograph Enhancement Techniques

Abdulbadea Altukroni, Omar Ezz El-Deen, Sadaf Jabeen, Sadaf Jabeen

Appropriate radiographic interpretation is critical for providing high-quality patient care. The radiograph’s wealth of data assists dentists in prescribing the best treatment option for their patients. Dental radiographs, particularly Ortho Pantomograms (OPGs) and periapical radiographs taken with low radiation doses, are frequently dark, low in contrast, and noisy. Image enhancement protocols are applied to radiographs to resolve these issues. However, selecting an appropriate technique is a tedious task, especially for the purpose of disease diagnosis. This study aims to survey standard image enhancement techniques for enhancing OPG and periapical radiographs. This study also investigates the potential image enhancement protocols conducted and what are the key factors involved in selecting a protocol for a certain type of dental disease. This review categorized the radiograph enhancement algorithm into three types: Contrast enhancement, frequency transforms and de noising filters, and deep learning. Extensive research has been conducted on the use of contrast enhancement and de noising filter algorithms for radiographs. The use of deep learning to enhance panoramic and periapical radiographs is still an emerging idea, and many potential results exist.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。