开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Mendeley Collins
Data-driven machine learning (ML), which has gained recent popularity in environmental toxicology, has distanced itself from hypothesis-driven research during the past few decades. The application of ML in environmental toxicology is still in its infancy, however, due to knowledge gaps, technical challenges with data quality, interpretability issues with high-dimensional/heterogeneous/small-sample data analysis, and a lack of a thorough understanding of environmental toxicology. We evaluate the most current advancements in the literature and highlight cutting-edge toxicological investigations utilising ML in light of the aforementioned issues (such as learning and predicting toxicity in complicated biosystems and multiple-factor environmental scenarios of long-term and large-scale pollution).