国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Evaluation of Climate Change Impacts on Runoff in the Gidabo

Amba Shalishe

Climate change significantly affects many hydrological systems, which in turn affects the runoff and the flow of rivers in Gidabo river basin. Therefore, the aim of this research was taken as to investigate the impacts of possible future climate change scenarios on the runoff in the catchment area of Gidabo River. Statistical Downscaling Model version 4.2 was used to downscale the daily precipitation, daily maximum and minimum temperature in the basin of the study area. The large-scale climate variables for the A2a and B2a scenarios obtained from the Hadley Centre Coupled Model version 3 were used to show future scenario. After the calibration of the model and testing of the downscaling procedure, the hydrological model was run for the three future periods: 2011-2040, 2041-2070, and 2071-2099. The meteorological variables such as, precipitation, minimum and maximum temperature that were downscaled from SDSM were used as input to the SWAT hydrological model which was calibrated (R=0.77) and validated (R=0.81) with meteorological and hydrological historical data (1980-2006) to examine the possible impact of climate change on the runoff of the catchment. The results obtained from this study indicate that there is significant variation in the monthly, seasonal and annual runoff. The SWAT simulation of future average seasonal runoff shows increasing pattern during February to May and June to September for both A2a and B2a scenarios in all time periods. The change in climate variables such as increase in precipitation and temperature thereby which is very sensitive parameter that can be affected by changing climate than any other hydrological component are likely to have significant impact on runoff.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。