国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Evaluation of land surface ecosystems and managed systems such as those in agriculture during the growing season

Andy Cope

The evaluation were made on four treatments physical SWC structures; micro basin, eyebrow basin, micro-trench and traditional pit. The treatments are replicated three times. Soil samples before and after the trial, soil moisture conservation and test tree data were collected for analysis. Except pH and soil texture some soil properties like; TN, P, OM, OC showed an improvement due to the SWC structures implementation. In the first year of trial there was no significant difference was observed soil moisture, plant height and collar diameter. In the second year of the trial highly significant variation at (p<0.05) was observed in soil moisture conservation percent. Micro-trench conserved the higher percent of moisture than other structures. In the third year only plant height show significant difference, but the others were not statistically significant. The result depicts that implementation of physical SWC structures are very important to conserve soil moisture at dry areas. Therefore, all stake holders should practice construction physical structure integrated with tree for land rehabilitation and alleviate soil moisture stress.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。