国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

"Extraction of Nanocellulose from Banana Rachis (Agro-waste) and Preparation of Nanoellulose-Clay Nanofilter for the Industrial Wastewater Purification "

MD. Mahmudur Rahman and Mohd Maniruzzaman

Industrial dye wastes represent one of the most problematic groups of pollutants because they can be easily identified by the human naked eye and are not easily biodegradable. This research article highlights some recent development of Nanocellulose-Clay Nanofilter (NCCNF) in water treatment technologies. Nanocellulose (NC) was extracted for this research work from banana tree rachis fiber (Ebelmuschus esculentus L). Firstly, obtained raw fibers from banana rachis were treated with soap solution and benzene-alcohol (1:2) mixture then alkali wash with 17.5% NaOH solution and finally, bleaching as well as 60% sulphuric acid (H2SO4) hydrolysis was carried out on it successively. By this way NC was extracted successfully from raw rachis fiber. On the other hand, collected white clay treated with ethylene diamine (5%). In this work, we described briefly how NC was produced and its peripheral surfaces were activated for high adsorption. The anti-fouling properties of ‘NC-Clay’ based nano-filters will be also highlighted. However, NC-Clay Nanofilter (NCCNF) was prepared by solution casting method. And the samples i,e RF, ATF, BF, NC and NCCNF were characterized by Fourier transforms infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA), X-ray diffraction (X-RD), Scanning electron microscopy (SEM) analysis. Analysis data supports this bio nanofilter is highly crystalline, thermally stable, have good surface morphology, and also have strong composite forming capacity as well as biodegradable. On the other hand waste water containing heavy metal solutions were also characterized by UV-Visible and AAS techniques.