国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Extrusion of Materials for Additive Ceramic Fabrication Using a PolymerFree Binder for Ceramic Precursors

Jong Wan Ko

The high polymeric concentration of the ceramic feedstock materials has made additive manufacturing of thick ceramic items difficult. However, the binder and additives have remained in the polymeric composition despite numerous studies to enhance the ceramic percentage in the feedstock. The use of a sol-gel-based ceramic slurry without the addition of polymeric additives is described as a revolutionary method for highly dense additive manufacturing [1-2]. The most popular fine ceramic substance, alumina, was used as a stand-in for ceramics. The proposed sol-gel solution met the requirements for material extrusion process, such as extrudable viscosity (100 Pa.s) and self-sustainable yield stress, while enabling a high solid loading of roughly 50% vol% without any polymeric dispersion. During the sintering process, this brand-new sol-gel binder system transforms into aluminium oxide nanoparticles that finally fuse to the alumina particles. The as-printed green body had a higher alumina content and a theoretical density of 66%, compared to the conventional moulding methods' results, which were lower. Additionally, a high density of 99.5% of the theoretical value and a reduced linear shrinkage of less than 16% were attained. This study would outline a workable plan for ceramic additive manufacturing as a developing fabrication technique.