国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Fabrication and Physico-chemico-thermo-echanical Accreditation of Green Composite

Ashish Chauhan and Balbir Kaith

The use of synthetic glass fiber as reinforcement is hazardous and its degradation is not easy, although these composites are useful for various applications. Hibiscus sabdariffa (Sorrel) has high (73.9%) cellulose content, tensile strength, and is present in abundance in nature through-out the world, but it is fragile and weather prone, that can be improved by graft copolymerization. Sorrel stem fiber was graft copolymerized with binary vinyl monomeric mixtures that transformed the properties and behavior of the fiber. These physico-chemico-thermally resistant graft co-polymers were then used as reinforcement in phenol-formaldehyde polymer matrix, and subjected to characterization and evaluation by advanced technique. Mechanical potential such as tensile strength, compressive strength, wear resistance, modulus of elasticity, modulus of rupture, stress at the limit of proportionality and hardness were screened to compare the change with the phenoplast. These fibers reinforced bio-composites exhibited physicochemico- thermal resistance and improved mechanical strength for better scientific and industrial applications. The graft copolymerization of waste biomass caused transformation in the properties of the fiber, and made it useful for reinforcement in polymer matrix that improved its bioremediation and biodegradation