国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Fe3O4's Phase Composition and Magnetic Properties are Affected by insitu Oxidation: Suggestions for Zinc Hydrometallurgy

Sun Dhriti Ghosh

The removal of iron in zinc hydrometallurgy results in the production of a significant amount of hazardous waste, which poses a serious and enduring environmental threat. As of late, an imaginative magnetite (Fe3O4) strategy for iron precipitation has been proposed. However, the oxidizing conditions in the pregnant leach solution from zinc hydrometallurgy cause Fe3O4's magnetic separation performance and phase composition to be sensitively altered.A variety of in-situ Fe3O4 samples with varying degrees of oxidation were created in this study. We found that oxidation didn't demolish the Fe expulsion and that all examples have a moderately high iron substance (>42.3%). In the meantime, although the samples' magnetic properties decreased from 32.31 to 6.56 emu/g, they were still able to be recovered (10.60 emu/g) by controlling the oxidation to some extent. As the degree of oxidation increases, there is a correlation between this and the phase transition of iron oxides. Raman and Fourier transform infrared spectroscopy measurements have also shown that the change in Fe-O bond length is the mechanism by which oxidation affects magnetic properties. This work gives another technique to the commonsense ramifications of the "attractive iron" rather than the magnetite precipitation strategy in zinc hydrometallurgy.