我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Ferrites are Magnetic Materials that can be used as an Alternative Source of Green Electrical Energy

Vivek Sharma

The solid-state sintering method was used to create the ferrites samples Mg1-xLixFe2O4 for x values of 0.0, 0.1, 0.2, and 0.3. These samples’ structural, morphological, magnetic, and electrical properties were the subject of in-depth examination. The power generation of these samples was the subject of a comprehensive investigation, and the role of Li-doping has been discussed. The spinel phase formation in impurity-free samples is confirmed by the XRD pattern. Scanning Electron Microscopy reveals that as MgFe2O4 is doped with lithium, the average grain size of the samples decreases [1]. MgFe2O4 has a saturation magnetization of 15.4 emu/g that increases with the lithium content, reaching a maximum of 39.3 emu/g for the Mg0.7Li0.3Fe2O4 sample. Magnetic recording, microwave magnetic devices, and numerous medical science applications all depend on ferrites. By creating a hydroelectric cell (HEC), ferrites have recently been shown to be an alternative green energy source. On the metal-oxide surface, the processes of water adsorption and dissociation play a significant role in the production of electricity in ferrites. The thermodynamic driving force is what leads to the stable formation of bonds between metal and oxygen or metal and hydroxyl when water is sprayed on a hydroelectric cell. The interaction between these ions and the d orbital of the Fe atom is what causes the surface of ferrite to react with water [2]. Water dissociates into H3O+ and OH ions as a result of this interaction and migrates toward silver and zinc electrodes, respectively. For a Li = 0.2 doped MgFe2O4 sample, a typical hydroelectric cell with a diameter of 2 inches produces 17.1 mA of peak current and 949 mV of voltage with a maximum output power of 15.85 mW.