国际标准期刊号: 2277-1891

国际先进创新、思想和创意杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

FFT and Wavelet-Based Feature Extraction for Acoustic Audio Classification.

A.K.M Fazlul Haque

Speech is one of the vital signals of acoustic classification. Speech recognition is also significant and very well known of audio processing. Speech contains very important frequency information of human being. The features of Audio, especially speech signal may be extracted using FFT (Fast Fourier Transform) and Wavelet to detect the frequency information of the signal. But it is difficult to extract the changes of small variation of speech signal with time-varying morphological characteristics. So, it is needed to be extracted by signal processing method because there are not visible of graphical audio signal. In this paper, an improved wavelet method has been proposed to extract the precise detection of small abnormalities of both original and noise corrupted speech signal which are taken empirically by writing MATLAB program. The proposed wavelet method found to be more summarized over conventional FFT and Wavelet in finding the small abnormalities of audio signal.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。