我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Floating Building Opportunities for Future Sustainable Development and Energy Efficiency Gains

Shahryar Habibi*

This paper presents the study concerning floating buildings in terms of energy efficiency performance and improving awareness to build them. It includes their capacity to deal with climate change by leading the use and implementation of innovative technologies in the built environment. Comparing floating buildings with land-based buildings reveals several advantages including the use of renewable energy sources and embarks on developing new settlement planning. This paper presents a review of the principal features of floating buildings that have a direct impact on global energy supplies and alternative renewable energy sources. Development of floating buildings needs the implementation of new technology, social and community knowledge. The new knowledge and experience gained in floating buildings can lead to optimum future approaches. This paper presents guidelines for developing sustainability strategies or decision-making frameworks for offshore renewable energy facilities. It will analyze example projects built on the seas in relation to offshore wind energy, wave energy and photovoltaic cells. The development and assessment of sea energy sources should be considered as renewable energy source. It also provides new strategies and methods to reduce climate crisis regarding floating architecture and promoting offshore energies as renewable energy resources. This paper highlights the importance of relevance to floating buildings as strategies for adapting to climate change and clarifies that offshore renewable energy resource should be focused in the study of future sustainable development and energy efficiency targets.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。