国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Forecasting Climate Change Scenarios in the Bago River Basin, Myanmar

Aung Ye Htut, Sangam Shrestha, Vilas Nitivattananon and Akiyuki Kawasaki

This study aims to forecast the climate change scenarios of Bago River Basin in Myanmar. A delta change method was used to correct the bias of maximum and minimum temperature and precipitation. The future projection period from 2010-2100 is classified into 2020s (2010-2039), 2050s (2040-2069), and 2080s (2070-2099) for analyzing meteorological parameters under RCP4.5 and RCP8.5 scenarios. It is observed that average annual maximum and minimum temperatures are projected to rise in the entire basin under both scenarios — most significantly in the 2080s. Average summer temperature is projected to decrease by approximately 0.25°C in the first century period under both RCPs. However winter season witnessed an increase in average temperature of 1.5-2.5°C, following by the rainy season with increase of average temperature of 0.9-2.6°C in future. Average annual precipitation shows a distinct increase in all three periods with the greatest upturn in the 2050s. Winter season is projected to receive more precipitation for both scenarios with an average increase of approximately 200 mm, whereas summer season shows the least rainfall change (25 mm) under both future scenarios. The highest mean monthly precipitation occurs in September during the 2020s (933 mm) and in July during the 2080s (868 mm) respectively. The average annual precipitation is projected to be at maximum in the 2020s (4085 mm, 40% increase) for RCP4.5 and in the 2050s (4263 mm, 43% increase) under RCP8.5.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。