国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Fracture Toughness of Hybrid Fiber-Reinforced Roller-Compacted Concrete Without Regard to Size

Sabrina Vantadori

The purpose of the current study is to demonstrate that the fracture toughness of hybrid fiber-reinforced concrete (HyFR-RCC), which is calculated using a modified two-parameter model, is size-effect independent (MTPM). The fracture behaviour of seven series of single edge-notched specimens made of both plain-RCCs and FR-RCCs (single and hybrid reinforcements), subjected to three-point bending, is simulated using a micromechanical numerical model [1]. To determine fracture toughness, the MTPM is applied to the numerical load vs CMOD curves. A comparison is made with experimental values that are listed in the literature. In order to demonstrate the size-effect independence, RCC specimens of various sizes are computationally simulated, and the fracture toughness is then evaluated analytically using the MTPM.

Before being compacted, layers of dense-graded aggregates, sand, Portland cement, and water are often distributed with one or more bulldozers in a type of stiff-dry, zero-slump concrete called roller-compacted concrete (RCC). In the 1960s, RCC was originally used in the construction of dams before becoming well-liked in the years that followed for the paving of storage areas, municipal and industrial roadways, and dam repair [2-7].The enhanced placement speed and significant cost savings compared to traditional Portland Cement Concrete (PCC) were the main drivers of the growing interest in RCC engineering applications. This is mostly attributable to the RCC mixture's differing constituent proportions compared to the PCC mixture, with a higher ratio of fine aggregates allowing for tight packing and consolidation. As a result, it is possible to obtain a fresh RCC that is stiffer than normal zero-slump concrete. In actuality, the combination is wet enough to allow for appropriate mixing and distribution of the paste without segregation while at the same time remaining stiff enough to maintain stability under vibratory rollers.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。