国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Functionalized Biomaterials - Oxygen Releasing Scaffolds

Jeong Ok Lim, Jeung Soo Huh, Syed Izhar Haider Abdi, Sing Muk Ng and James J Yoo

The advancement in tissue engineering has reached a considerably high level with major achievements, especially in mimicking the nature in terms of morphology, structure, functionality and mechanical strength. Nonetheless, the current technology still fails to deliver the urgent need in producing construct of larger volume such as organs, which will be more effective in tackling chronic diseases related to organ failure. One of the main causes identified is due to the serious necrosis that occurs as a result of the deficient of oxygen due to its low dissolution and diffusion in thick tissue matrices. The rate of vascularization is far too low compared to the differentiation rate of the cells. In order to sustain the survival of cells before the establishment of blood vessel, an alternative supply of external oxygen to the cells will be of advantage. Current trend has seen to be moving towards this direction, and the external supply can be obtained from tissue scaffolds. This approach is made possible by functionalizing biomaterials with well controlled oxygen producing mechanism. This review concentrates on such efforts and discusses some of the insights that are related in developing functionalized biomaterial scaffolds with the intention to adequately supply oxygen for tissue engineering purpose.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。