国际标准期刊号: 2161-0460

阿尔茨海默病和帕金森病杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Gastrointestinal (GI) Tract Microbes and Microbial Neurotoxins in the Human Central Nervous System (CNS) in Alzheimer’s Disease (AD)

Yuhai Zhao, Lin Cong, Vivian Jaber and Walter J Lukiw

Our ongoing appreciation of the magnitude and complexity of the human microbiome has resulted in a reassessment of many fundamental concepts of the contribution of the microbial community to neurological health and disease. The assumption of the privileged immunological and compartmentalized status of the human central nervous system (CNS) has been recently challenged in multiple investigations - particularly because microbial-derived nucleic acid sequences and highly neurotoxic and pro-inflammatory exudates representative of gastrointestinal (GI) tract Gram-negative anaerobic bacteria are showing up within CNS compartments. Unanticipated microbial presence has also recently been discovered in the anatomical regions of the CNS implicated in pro-inflammatory pathological signaling and neuro-immune disruptions that characterize progressive and lethal neurodegenerative diseases of the CNS such as Alzheimer’s disease (AD). This communication (i) will briefly review some very recent research on the contribution of the GI tract microbiome and microbial neurotoxins to inflammatory neurodegeneration in the CNS with emphasis on AD wherever possible; (ii) will review the evidence that the GI tract microbiome may have an increasing inter-relationship with the CNS via leaky barriers as we age; and (iii) will review recent experimental findings that support the intriguing possibility that the CNS may possess its own microbiome whose basal complexity is in part derived from the GI tract microbiome of the host