国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Geomicrobiology: Exploring the Microbial World Beneath Our Feet

Dr. David Thusen

Geomicrobiology is an interdisciplinary field that investigates the interactions between microorganisms and minerals in various geological environments. Microbes play crucial roles in the cycling of elements, mineral formation and transformation, and the overall geochemical processes occurring in Earth's systems. This field combines concepts from microbiology, geology, chemistry, and environmental science to explore the intricate relationships between microorganisms and the Earth's solid and aqueous phases. Geomicrobiological research has significant implications for understanding past and present Earth processes, biogeochemical cycling, and even the search for extraterrestrial life. This abstract provides an overview of the fundamental principles, key research areas, and emerging trends in the field of geomicrobiology. Geomicrobiology is a multidisciplinary field that explores the interactions between microorganisms and geological processes. It encompasses the study of microorganisms inhabiting various geological environments, such as soils, sediments, caves, hydrothermal vents, and deep subsurface environments. These microorganisms play significant roles in shaping Earth's geochemical cycles, biogeochemical transformations, and the evolution of the biosphere.

In geomicrobiology, researchers investigate the diverse metabolic capabilities of microorganisms and their impact on elemental cycling. Microbes are involved in key processes such as mineral weathering, metal solubilization, biomineralization, and organic matter degradation. Through their activities, microorganisms can influence the formation and dissolution of minerals, alter the mobility of nutrients and contaminants, and contribute to the preservation of geological records. The importance of geomicrobiology as a field that bridges microbiology, geology, and environmental sciences. The integration of these disciplines deepens our knowledge of microbial interactions with the Earth's physical and chemical systems. By elucidating the intricate relationships between microorganisms and geological processes, geomicrobiology contributes to our understanding of Earth's past, present, and future, as well as the potential for life in diverse and extreme environments.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。