我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • 学术钥匙
  • 期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

GGE Biplot Analysis of Yield Performance and Stability of Pearl Millet Genotypes (Pennisetum glaucum (L.) R. Br.) Across Different Environments in Ethiopia

Hailemariam Solomon, Adane G Yohans

The study was conducted in northern and western parts of Ethiopia specifically at Sheraro, Humera and Miesso locations for consecutive years beginning from 2012 to 2014. The main objective of the study was to evaluate and identify better performance and stable pearl millet genotypes across different environments and years. Fifteen pearl millet genotypes were tested at different locations and promising genotypes could be identified. The experiment was conducted using randomized complete block design with three replications. Combined mean analysis was computed after using Anderson-Darling normality test and Levene homogeneity test. Genotype and Genotype by environment interaction (GGE) biplot analysis were computed to evaluate stability and adaptability of the grain yield of pearl millet genotypes. The analysis of ANOVA indicated that the mean grain yield ranged from 1687.28 kg ha-1 for G14 (ICMV 8400 white) to 2304.72 kg ha-1 for G2 (Sub-2). From the total pearl millet genotypes seven of the genotypes showed above the mean average yields. The highest (2542.27 kg ha-1) and the lowest (1593.42 kg ha-1) grain yield were attained at Miesso in 2013 and at Sheraro in 2014 respectively. GGE biplot analysis was also computed to identify the performance and stability of pearl millet genotypes and hence a total of 72.05% variation was showed for the tested pearl millet genotypes at different environments. The study result revealed that the most responsive of corner genotypes were genotype three, genotype four, genotype five, genotype ten and genotype fourteen. At the same time genotype three, genotype six, genotype eight, genotype ten and genotype fourteen with the longest projection from the AEC x-axis were highly unstable. In contrast, genotype four, genotype two, genotype eleven and some other invisible genotypes were highly stable. In terms of stability and performance genotype four (Sub-2) was the highest followed by genotype one (Kolla-1). Regarding the GGE biplot analysis, it was the most powerful method to analyze, visualize and interpret the genotype and environment interaction. It was also a convenient procedure to genotypes stability studies and environments that has to be applied in plant breeding program. At the end, the top performed pearl millet technology should be more popularized and seed disseminated to farmers to grow at wider acreages to ascertain food security and overall livelihood improvement.