国际标准期刊号: 2161-1165

Epidemiology: Open Access

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • Genamics 期刊搜索
  • 安全点亮
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • CABI 全文
  • 出租车直达
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

GIS Based Mapping and Spatial Distribution of Tuberculosis in Punjab, Pakistan

Aasia Khaliq, M Nawaz Chaudhry, Muhammad Abdul Sajid, Uzma Ashraf, Rabia Aleem, Saher Shahid

Tuberculosis (TB) is known as a disease that prone to spatial clustering. Recent development has seen a sharp rise in the number of epidemiologic studies employing Geographical Information System (GIS), particularly in identifying TB clusters and evidences of etiologic factors. This retrospective population-based study was conducted to analyze spatial patterns of TB incidence in Punjab province, Pakistan. TB notification data from 2007 to 2017 collected from TB clinics throughout the province was used along with population data to reveal a descriptive epidemiology of TB incidences. Spatial distribution of the disease was observed by using ArcGis. Machine learning algorithms like ANN, SVM and Maximum Entropy were used to predict the presence of the disease with a prediction power of 82%, 75% and 78% respectively. This study has also shown a heterogeneous pattern of the disease over the years with some consistently high risked areas. This study can be very helpful for policy makers to refine their policies for successful eradication of the disease.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。