国际标准期刊号: 2155-9910

海洋科学:研究与开发

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
分享此页面

抽象的

Global Loss of Freshwater and Salination of Sea

Gaspar Banfalvi

The sea level has continuously fluctuated over geologic time. The best evidence for eustatic sea level changes was provided by geologists who studied the shifts of shorelines and recoveries resulting in sedimentary deposits also referred to as sequence stratification. Continuing global warming raised the question whether or not the melting of the glacial ice and snow reserves could result in earlier high sea levels. To answer the question the sea levels were turned to volumetric data. This was achieved by calculations i) using the radii of Earth, with and without the geometric radius of the geoid Earth, ii) selecting among data for an average sea depth, iii) comparing the volumetric values of best fitting values. Upon reliable data within 0.5% deviation were obtained, linear correlation was found between the volumes of sea that would be needed to achieve different sea levels. The calibration curve revealed that 80% (20 �? 106 km3) melting of the available fresh water reserves of polar glaciers, ice sheets and permanent snow (100%, ~25 �? 106 km3) would cause about 50 m sea level rise. These calculations prove that earlier high (200-300 m) sea level elevations will never be obtained due to the global loss of water to the outer space. In connection with the water deficiency, the osmotic gap between the osmotic concentration of land vertebrates (0.3 Osm) and that of sea (1.09 Osm) is reflecting the salination of ocean. Salinty changes were distinguished as short term dilution periods and a long-term salination process. Long-term salination contributed by human pollution of sea and fresh water will seriously impact future life on Earth.