国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Granite Fracture Initiation and Growth: Petrographic Evidence of Hydrothermal Alteration

Takeshi Yugusuchi

Granite contains biotites that have undergone varied degrees of modification. In order to determine the origin and progression of granite fractures, this study examines the correlations among alteration markers, areal microvoid fractions in chloritized biotite, and macroscopic fracture frequencies in the Toki granite, central Japan. Understanding potential hydrogeological applications can help with proper characterizations of the frequency distribution of macroscopic fractures in granite, which supports safety assessments for geological disposal and storage. To collect samples for the analysis, 191 m of borehole 06MI03 were bored. A total of 24 samples that showed variations in the frequency of macroscopic fractures were chosen. The amount of hydrothermal alteration and the frequency of fractures inside granites are to be assessed utilising novel approaches such as biotite chloritization and petrographic alteration indicators [1]. The ratio of the alteration product area to the original mineral area is known as the alteration indicators. Additionally, through image analysis, the area fraction of microvoids in minerals was used to quantitatively define the volume of microscopic fractures and micropores in the mineral. Samples with high areal microvoid fractions and large alteration markers also have significant macroscopic fracture frequencies. Macroscopic fractures are caused by microvoids, which form at temperatures between 350 and 780°C. Alteration markers and other intrinsic characteristics can be used to assess microvoids. Later faulting and unloading (extrinsic processes) transformed microscopic fractures into macroscopic ones. The characterization of the existing and future distributions of macroscopic fracture frequencies depends on intrinsic parameters, which are utilised to determine the origin of macroscopic fractures

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。