国际标准期刊号: 2157-7625

生态系统与生态学杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
分享此页面

抽象的

Greenhouse Gas Diffusive Flux Assessment

Anvesh G, Giri Prasad C and Rafi M 

There is a growing interest and concern regarding Green House Gas (GHG) emissions as these is the major contributors of global warming. Carbon dioxide (CO2) and Methane (CH4) are two main GHGs which get emitted from both natural aquatic and terrestrial ecosystems as well as from anthropogenic activities. In natural aquatic system water storage is an important aspect for meeting the requirements of drinking water, food, and energy. However, development of such water bodies will impact the environment. Recent studies have shown that water bodies play a significant role as the sources of GHG emission, particularly in tropical climatic zones. One possible reason for this is the annual water temperature is much higher in tropical climates. This means that the rate of decomposition is faster leading to higher CO2 and CH4 flux in the water. Indian reservoirs indicate the complete spectrum of different types of reservoir found in the world. Their performance in terms of emission of GHGs is more difficult to trace out. In this paper pathways of GHG emission from a reservoir have been discussed and a tool as suggested by UNESCO/IHA has been used to assess the GHG emission from four existing reservoirs in India. These reservoirs are of different age and are located in different parts and climatic zones of India. Predicted diffusive fluxes in CO2eq have been estimated for the year 2013 as well as over the 100 years of their existence in terms of Tonnes CO2 eq.