我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Heavy Metal Immobilisation in Soil Using a Novel Biopolymer Based on Xanthan Gum

David Gomes

Contact time, starting concentration, and pH change were used to demonstrate how Cd, Cu, Pb, and Zn sorption reactions occurred when a biopolymer based on xanthan gum was present. The biopolymer has three major functional groups and has a negative surface charge in the pH range of 1-8.5. (i.e., OH, C-H, and C double bond C bonds). The biopolymer’s concentrations of Cd, Cu, Pb, and Zn reached equilibrium after 10 min, and a pseudo-secondorder kinetic process ensued. Cd, Cu, Pb, and Zn each had maximal sorption capacities of 16.0 mg/g, 8.5 mg/g, 38.3 mg/L, and 7.2 mg/L, respectively. It was discovered that the Langmuir sorption isotherm was more suitable than the Freundlich model. Additionally, HCl and NaH2PO4 extraction were used to evaluate the immobilisation of heavy metals in the soil that had been amended with biopolymers. Cu was found to be immobilised in soil between 20% and 90% of the time, and the immobilisation rate rose with the biopolymer mixing ratios. According to this study, Cd, Cu, Pb, and Zn may be removed from solutions using a biopolymer, and the biopolymer could also be used as an addition to immobilise heavy metals in soil.