国际标准期刊号: 2155-9872

分析与生物分析技术杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Immobilization of P22 Bacteriophage Tailspike Protein on Si Surface for Optimized Salmonella Capture

Sarang Dutt, Jamshid Tanha, Stephane Evoy and Amit Singh

Bacteriophage based technology has gained interest in developing pathogen detection platforms for biosensing applications. In this study, P22 phage tail spike proteins (TSPs) have been immobilized on Si surfaces for optimized capture of host Salmonella enteric serovar Typhimurium. It was then demonstrated that roughening of the Si surface before the TSP immobilization improves the bacterial capture 2-fold compared to a flat Si surface. Coarse, medium, fine and superfine size ridges were patterned on the Si surface using block copolymer layer and plasma etching and each surface was functionalized by TSPs for bacterial capture. The capture density increased with decreasing size of the ridge until it reached an optimum for fine ridges; the capture density decreased when the surface ridges were superfine and deep. This method shows a 22-fold and 3-fold increase in bacterial capture density compared to a Cys- and a His6-tag based oriented TSP immobilization, respectively. Bovine serum albumin (BSA) was used as a surface protective layer to prevent non-specific binding of bacteria and E. coli cells were used as control to demonstrate the specificity of recognition. Negligible binding was observed for control bacteria in presence of TSPs and the host bacteria in the absence of TSP on the surfaces.