开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Bin Ai, Jiamei Huang, Yong Chen, Gumu Ding, Minmin Zhao, Yuan Luo, Hu Liu, Jiankun Xie and Fantao Zhang
Salinity is one of the major impediments in rice cultivation worldwide. MicroRNAs (miRNAs) are 21-24 nucleotide RNAs that function as ubiquitous regulators of gene expression in both plants and animals. Many plant miRNAs, such as miR1861, have vital roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, transgenic rice plants overexpressing miR1861c in Dongxiang wild rice displayed increased salt stress tolerance compared to wild-type plants. We observed that miR1861c expression was significantly up regulated under salt stress. Consequently, the target gene of miR1861c, LOC_Os08g27860, was dramatically reduced by salt treatment. The expression of LOC_Os08g27860 was also significantly down regulated in 35S:miR1861c plants compared to wild-type plants. Our results therefore show that miR1861c in Dongxiang wild rice could serve as a positive regulator of salt stress tolerance.