国际标准期刊号: 2155-9872

分析与生物分析技术杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Insight from Bioanalysis about the Behavior of Microbial Communities

Dorota Korsak

In this article, a different method of investigating bacterial proliferation is suggested. It is based on the detection of enzyme activity as opposed to the traditional physical approaches. It is shown how to monitor microbial ureolytic activity in real time and online using flow analysis (applied to a model experimental biosystem). A solenoid micropumper and microvalve system controlled by an Arduino microcontroller make up the fully automated bioanalytical flow system that was designed. Dedicated flow-through optoelectronic detectors constructed of paired light emitting diodes are used to carry out photometric detection based on the Nessler reaction. With a detection limit below 0.44 U mL-1, a high sensitivity in the linear range of response (up to 200 mV U1 mL), and reasonably high throughput, the developed bioanalytical system enables discrete assaying of microbial urease in a wide range of activity up to 5.4 U mL-1 (9 detection per hour). The suggested differential measurement method allows for the removal of interfering effects from substrate and products of biocatalyzed reactions as well as other components of the medium used for bacterial expansion (i.e., a difference between peaks register for sample with and without external addition of urea is treated as an analytical signal). In order to control the growth of urease-positive bacteria strains (Proteus vulgaris, Klebsiella pneumoniae, and Paracoccus yeei), the developed bioanalytical system was successfully used. This included examining the effects of different microbial cultivation conditions, such as temperature, the makeup of the culture medium, and the quantity of substrate necessary to induce bacterial enzymatic activity. The created bioanalytical flow system can be used to detect the decline phase as well as estimate the parameters of the lag and log phases of microbial growth based on metabolic activity.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。