国际标准期刊号: 2155-9872

分析与生物分析技术杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Intracellular Transport of Enzymes in Bacterial Cell

Dr. Luis M

Background: Although little is known about the location and movement of enzymes within bacterial cells, this information is crucial for comprehending how metabolism is regulated spatially. The heavy RF synthase, a sizable protein complex with a capsid structure formed by RibH and an encapsulated RibE homotrimer, which regulates substratechanneling, has been the focus of intensive Research on the four key enzymes (Rib enzymes) in the riboflavin (RF) production pathway in vitro using Bacillus subtilis, a Gram-positive model bacteria. Unfortunately, little is understood about these enzymes’ activity and mobility in vivo.

Results: We looked at where the Rib enzymes were located and how they were moving around in the cytoplasm of B. subtilis. We present evidence for limited diffusion at the cell poles and otherwise Brownian motion by employing single particle tracking to characterise the diffusion of rib enzymes in living cells. Most RibH particles exhibited evident nucleoid blockage and a high level of restricted motion, which are largely eliminated following Rifampicin treatment, demonstrating that confinement is reliant on ongoing transcription. In contrast, RibE is primarily diffusive within the cell and only exhibits RibH nanocompartment encapsulation. In single cells, we localise several diffusive populations and discover that fast diffusion mostly crosses nucleoids in the cell centres whereas slower, constrained subdiffusion takes place at the congested cell poles.

Conclusions: Our findings demonstrate that active enzyme mobility varies locally within the bacterial cytoplasm, establishing metabolic compartmentalization primarily at the cell poles.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。