国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Intrinsic and Specific Vulnerability of Groundwater in a River Valley - Assessment, Verification and Analysis of Uncertainty

Ewa Krogulec

Aquifer vulnerability maps are valuable tools for communicating concerns about the level of groundwater pollution hazard to local land use planners and to the general public. Groundwater vulnerability to contamination in the Kampinoski National Park (KNP) area in central Poland was evaluated as a basis for developing appropriate protection strategy for the groundwater resources and management in recreation areas located near Warsaw. Kampinoski National Park (KNP) and its lagging are located in central Poland in the valley of the Vistula River. Assessment of groundwater vulnerability was accomplished using U.S. EPA DRASTIC. Region of the Vistula valley is characterized by medium (324 km2) and moderately high (229 km2) intrinsic vulnerability to contamination. The DRASTIC method was used to assess specific vulnerability to contamination, taking into account additional parameters defining a potential risk of threat of groundwater connected with land development. The area of studies is characterised by a moderately high (340 km2) and medium (247 km2) specific vulnerability to contamination. The DRASTIC method has been applied to assess the specific vulnerability of groundwater to nitrate, basing on the possible impact of land development. Land development is analysed in the aspect of possible, potential contamination of groundwater with nitrate, but also a possibility of protecting waters before any potential contamination. The area of studies is characterised by low (426 km2) and medium (136 km2) specific vulnerability to contamination with nitrate. Use of GIS techniques and geo-statistical methods during the development of the vulnerability made possible a more precise assignment of the parameter values and, subsequently, allowed for a more accurate distinction of vulnerability types.