我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • 学术钥匙
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Knee Replacement Implant of Joint Contact Forces

Abdu R

Prediction of lower extremity muscle and force of contact can provide useful insights to assist clinicians in the diagnosis as well as in the development of appropriate treatments for musculoskeletal disorders. Studies often estimate joint contact forces using model-based muscle force estimates due to the lack of reliable contact models and material properties. The objective of this study was to develop an integrated Hertzian contact model. Next, the in vivo elastic properties of the total knee replacement (TKR) implant were determined using in vivo contact force, providing reliable material properties for modeling purposes. image. First, a rigid patient-specific musculoskeletal model was constructed. Second, an STL-based implant model was designed to account for changes in contact area during gait movements. Finally, an integrated hertzian contact pattern was determined for in vivo identification of the elastic properties of Young's modulus and Poisson ratio of instrument-equipped TKR implants. Our study shows the possibility of using a new method to predict contact force without knowing the mechanical force. The outcomes can therefore lead to an accurate and reliable prediction of the general human contact forces for a new case study.