我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Lead's Effect on Human Middle Ear Epithelial Cells

Jun Pyo

Lead is a toxic heavy metal that can have detrimental effects on various organs and tissues in the human body. However, its impact on middle ear epithelial cells, which play a crucial role in maintaining ear health and function, remains poorly understood. This study aimed to investigate the effect of lead on human middle ear epithelial cells.

Primary cultures of human middle ear epithelial cells were exposed to different concentrations of lead for a specified period. Cellular viability, morphology, and function were assessed using various assays. The expression levels of genes related to inflammation, oxidative stress, and cell damage were analyzed using quantitative PCR. Additionally, the production of pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assays.

The results revealed that lead exposure significantly reduced the viability of middle ear epithelial cells in a dosedependent manner. The cells exhibited morphological changes, including cellular shrinkage and membrane damage. Furthermore, lead exposure upregulated the expression of inflammation-related genes and increased the production of pro-inflammatory cytokines. Increased oxidative stress markers were also observed in lead-exposed cells.

In conclusion, this study demonstrates that lead exposure adversely affects human middle ear epithelial cells by compromising cell viability, inducing morphological alterations, and triggering inflammatory responses. These findings provide valuable insights into the potential role of lead in the development or exacerbation of middle ear disorders. Understanding the mechanisms underlying lead toxicity in the middle ear may contribute to the development of targeted interventions for mitigating its detrimental effects.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。