国际标准期刊号: ISSN 2472-0518

石油与天然气研究

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Low Temperature Combustion after Treatment Strategy and Particle Emission Correlation with different Ratio of Dual Fuel

Jyotirmoy Barman

Low-Temperature combustion (LTC) has demonstrated huge potential to simultaneously control nitrogen oxide (NOx) and particle matter (PM) significantly in automotive engines. Hydrocarbons (HCs) and carbon monoxide (CO) are key challenges due to low combustion temperatures in dual fuel combustion. The selection of diesel oxidation catalyst (DOC) and precious group metal (PGM) content is critical for low-temperature combustion (dual fuel) to control HC and CO emissions norms. An experimental test bed study was conducted in a 3.8 litre diesel common rail engine with a gasoline port injection to evaluate the after-treatment strategy in low and high-reactive fuel. Three DOCs with different PGM content were tested along with different dual fuel compositions to understand their effectiveness and particle matter composition. The chemical composition of exhaust particles from engine Out and DOC out are compared. An increase in low reactive fuel (D15G85) and an increase in PGM content highlights a significant reduction in PM from 31 mg/kWhr to 2 mg/kWhr. The major reduction in particle size distribution observed with high PGM loading is 40 nm with a dual fuel configuration of D15G85 as the best approach to meet emission standards. Additionally, a detailed study was made to investigate the characteristics of particle mass and particle size distribution in the engine and after-treatment emissions. The particle number (PN) and their correlation for engine out, DOC Out, and DPF out emission are demonstrated with different dual fuel combinations of D50G50, D25G75, and D15G85 compared with diesel fuel. To comprehend its characteristic of particle number and particle mass correlation, dual fuel is tested in different ratios. A linear correlation of PM and PN emissions is observed between engine out and DOC out as particulate diameter of the particle size with the total number concentration of particles in engine and DOC out. The nonlinear trend is observed for DPF out due to small particle size (around 5nm) with different ratios of dual fuel. Particle matter filter paper analyses were performed to understand chemical composition with different DOCs and dual fuel ratios to understand Soluble Organic Fraction (SOF) and Insoluble Organic Fraction (IOF) content.