国际标准期刊号: 2168-9806

粉末冶金与采矿学报

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 打开 J 门
  • Genamics 期刊搜索
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Making Polypyrrole/Graphene Oxide Composite Nanosheets and Using Them to Remove Cr (VI) From Aqueous Solutions

Xiafenj Li

Using the sacrificial-template polymerization approach, we describe the straightforward, dependable synthesis of polypyrrole (PPy)/graphene oxide (GO) composite nanosheets in this study. Here, PPy, which acted as both the oxidant and the sacrificial template, was deposited onto MnO2 nanoslices. MnO2 was continuously consumed during the polymerization of pyrrole on the surface of GO nanosheets. As a result, the PPy that is developing on the surface of GO nanosheets resembles MnO2 nanoslices in shape [1]. Due to its independence from removing the template, which is typically a difficult and time-consuming experimental operation, this method can allow the manufacture of PPy nanostructures more readily than the standard route. Based on the synergy effect, the asprepared PPy/GO composite nanosheets showed improved characteristics for removing Cr(VI) ions in aqueous solution. The PPy/GO composite nanosheets have an adsorption capacity that is roughly twice as great as that of regular PPy nanoparticles. We think that our research may provide a fresh, efficient route for enhancing adsorption's capacity to remove heavy metal ions from waste water [2].

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。