开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Pyeong-Su Shin, Jong-Hyun Kim, Ha-Seung Park , Yeong-Min Baek , Dong-Jun Kwon , K. Lawrence DeVries and Joung-Man Park*
Optimal glass fiber/epoxy composite conditions were investigated as functions of different epoxy resin structures. Bisphenol-A and novolac type epoxies were used as composite matrices. TGA and DSC measurements were used to investigate thermal stability and glass transition temperatures of these resins. A UTM was used, at room and high temperatures, to preform tensile and compressive tests as well microdroplet pull-out tests to investigate the mechanical and interfacial properties of the resins and their composites. Novolac epoxy resin and its composites exhibited better mechanical and interfacial properties than bisphenol-A and its composites. It was also observed that the shape of microdroplet on the glass fiber was significantly narrower for the novolac resin than it was for the bisphenol-A epoxy resin.