国际标准期刊号: 2155-9872

分析与生物分析技术杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 学术期刊数据库
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 研究期刊索引目录 (DRJI)
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Medication and Illicit Substance Use Analyzed Using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) in a Pain Population

Amadeo Pesce, Elizabeth Gonzales, Perla Almazan, Charles Mikel, Sergey Latyshev, Cameron West and Jennifer Strickland

Background: Patients on chronic opioid therapy are often closely monitored to identify prescribed or nonprescribed medications and/or illicit substances and to identify medication use that may lead to adverse events. Monitoring is typically performed using a combination of clinical tools and assessment methods that often include patient medication histories, risk assessments, and medication monitoring with urine testing. The chronic pain population may be prescribed an average of three to five medications for pain and associated symptoms. In addition to prescribed therapies, this patient population often takes non-prescribed medications and/or illicit substances. Medication monitoring with Urine Drug Testing (UDT), particularly when performed using mass spectrometry, provides accurate information about medications and illicit substances present in the urine.

Purpose of the study: To use LC-MS/MS analyses to describe the variety of medications and metabolites observed in urine specimens from individuals on opioid therapy.

Methods: Analytical procedures were developed using LC-MS/MS that could detect and differentiate between various opioids and their metabolites, other medications commonly prescribed for pain, and certain illicit substances. This retrospective analysis used approximately 340,000 de-identified specimens tested between November 2011 and February 2012 at Millennium Laboratories. Data was sorted to determine frequency of detection and concentrations of the excreted drugs and metabolites.

Results: The most frequently observed medications were hydrocodone and oxycodone, and their metabolites. The next most frequently observed medication was the benzodiazepine class followed by gabapentin, buprenorphine, and morphine. Additionally, illicit substances were detected in 15% of specimens; the most common illicit substances were cannabinoids and cocaine.

Conclusions: Urine drug testing, using LC-MS/MS technology with validated cutoff values for each analyte, provides objective data for providers to use when assessing medication use, potential drug-drug interactions, potential adverse events, and possible diversion. Specific identification of both the medication or substance and the associated metabolites allows for informed interpretation of UDT results. Understanding the medications and illicit substances found in UDT specimens from the pain population helps providers optimize medication monitoring for the best possible plan for pain management.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。