国际标准期刊号: 2157-7625

生态系统与生态学杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
分享此页面

抽象的

Methods of Analysis (Extraction, Separation, Identification and Quantification) of Carotenoids from Natural Products

Monica Butnariu

Developing techniques for isolation and identification of biocompounds, from natural products, resulted in a rapid enrichment of carotenoid pigments number. For their isolation from biometabolites mixtures, the physical and chemical properties are taken into account. Carotenoids are sensitive to light, heat, oxygen, acids and alkaline bases. The exposure to light (direct sunlight/ UltraViolet), causes cis–trans photoisomerization, which may lead to their photodestruction. Biological materials containing carotenoids and their solutions must be protected from the action of light. Many carotenoids are thermolabile (xanthophylls); their heating being indicated only when it is absolutely necessary. The separation of carotenoids is done at room temperature or up to –20°C, in the dark. In the case of hot saponification they should be protected by a low–boiling solvent (30–60°C). Carotenoids may be oxidized in the presence of oxygen or peroxides, because of their sensitivity to oxygen in the adsorbed state (in thin layer or column chromatograms). It is necessary to operate in inert conditions (under nitrogen or vacuum). The oxidation during the extraction and saponification can be minimized if it is carried out in a nitrogen atmosphere. The exposure of carotenoids to acids, leads to changes such as: the oxidative decomposition, cis–trans isomerization and isomerization of 5,6–epoxides and 5,8–epoxides. The inconveniences are minimized by neutralization (calcium carbonate, pyridine, dimetilalanine). It works with purified solvents, freshly distilled, chlorinated derivatives (dichloromethane or solvents containing hydrochloric acid). The storage of carotenoids should be done in the dark, under an atmosphere of nitrogen or in vacuum, at a temperature of –20°C. The best preservation method is in the crystalline state. The current research techniques are using spectral methods, which provide accurate information on the structure and properties of organic biosubstances. Compared to chemical methods of identification, spectral methods have the advantage that it provides data faster, are accurate, require small amounts of material and enable continuous analysis at different stages of processing of the compound extracted without changing the composition of the biosubstance investigated, which enables its recovery. This chapter presents the main methods of extraction, separation and identification of organic compounds with direct applications on carotenoids.