开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Rahul Mehtha
The review was conducted at the eight individual sites in Austria and the Czech Republic where measured daily RG values were available as a reference, with seven methods for RG estimation being tested, and ii) for the agricultural areas using daily data from 52 weather stations, with five RG estimation methods. In the latter case the RG values estimated from the hours of sunshine using the angstrom - Prescott formula were used as the standard method because of the lack of measured RG data. At the site level we found that even the use of methods based on hours of sunshine, which showed the lowest bias in RG estimates, led to a significant distortion of the key crop model outputs. When the angstrom-Prescott method was used to estimate RG, for example, deviations greater than 10 per cent in winter wheat and spring barley yields were noted in 5 to 6 per cent of cases. The precision of the yield estimates and other crop model outputs was lower when RG estimates based on the diurnal temperature range and cloud cover were used. The methods for estimating RG from the diurnal temperature range produced a wheat yield bias of more than 25 per cent in 12 to 16 per cent of the seasons. Such uncertainty in the crop model outputs makes the reliability of any seasonal yield forecasts or climate change impact assessments questionable if they are based on this type of data. The spatial assessment of the RG data uncertainty propagation over the winter wheat yields also revealed significant differences within the study area. We found that RG estimates based on diurnal temperature range or its combination with daily total precipitation produced a bias of to 30 per cent in the mean winter wheat grain yields in some regions compared with simulations in which RG values had been estimated using the angstrom -Prescott formula