国际标准期刊号: 2161-0460

阿尔茨海默病和帕金森病杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 中国知网(CNKI)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Mitochondrial Complex I Deficit in the Olfactory Systems of Age-related Neurodegenerative Monkey Models: A PET Study using 18F-BCPP-EF

Fumio Hashimoto, Hiroyuki Ohba, Masakatsu Kanazawa, Shingo Nishiyama, Takeharu Kakiuchi and Hideo Tsukada*

Objective: Dysfunction of olfactory bulb area (OBA) is reported in several types of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Although pathophysiological mechanisms responsible for changes in olfactory function remain unclear, the quantitative parameters for olfactory function are expected for diagnose of neurodegenerative diseases. We developed a novel probe for positron emission tomography (PET), 18F-2-tert-butyl-4-chloro-5-{6-[2-(2-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one (18F-BCPP-EF), for quantitative analysis of mitochondrial complex I (MC-I) activity in the living brain. In the present study, the applicability of 18F-BCPP-EF to predict age-related neurodegenerative damage in the monkey brain as an MC-I deficit in the OBA was investigated.
Methods: PET measurements with 11C-PiB for amyloid--β (Aβ), 11C-DPA-713 for translocator protein (TSPO) and 18F-BCPP-EF were performed in aged monkeys. The binding specificity of 18F-BCPP-EF to MC-I in the OBA was evaluated with rotenone, a specific MC-1 inhibitor, in young animals. 11C-PiB binding to Aβ and 11C-DPA-713 binding to TSPO were calculated as standard uptake value ratios (SUVRs). The total distribution volume (VT) of 18F-BCPP-EF was calculated using a Logan graphical analysis using metabolite-corrected plasma input function, and correlations between the olfactory VT of 18F-BCPP-EF and SUVRs of 11C-PiB or 11C-DPA-713 in several brain regions were analyzed.
Results: Pre-dosing of rotenone resulted in the significant reduction of VT values in all brain regions including the OBA. MC-I activity in the OBA exhibited age-related reduction, which positively correlated with MC-I activity in the olfactory-related and cortical regions. OBA MC-I and TSPO as measured using 11C-DPA-713 were inversely correlated in the olfactory-related and cortical regions, but association between OBA MC-I and Aβ deposition as measured using 11C-PiB were observed only in olfactory-related regions.
Conclusion: The present study demonstrated that OBA MC-I activity could be a potential predictive parameter of neurodegenerative damages related Aβ deposition and TSPO/neuroinflammation in the living brain.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。