国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Modelling the Climatic Variability in the Niger Delta Region: Influence of Climate Change on Hydrology

Agumagu O and Todd M

With substantial variations to flood occurrence predicted as a result of climate change it becomes significant to investigate how global hydrological models process climate-forcing data. The paper presents reasonable analyses of projected hydrological effects of climate change on the Niger Delta region, Nigeria. Runoff simulated represent the present and future flood risk for the catchment of the River Niger using Global Hydrological Models (GHMs) from EU WATCH project driven by three GCMs. The simulated discharges are compared with the monthly gauge measurement along the River Niger from the Global Runoff Data Centre (GRDC). A period of (1970-2050) was chosen to understand the climatic variability across the Niger Delta region. The GHMs under Special Report on Emissions Scenarios A2 scenario were used to provide future climate scenarios over the Niger River. The hydrological models from EU WATCH project were used to calculate flood extents for different model outputs. The simulation shows clears trends of increased in river discharge over the catchment although uncertainty cannot be over role. Considering the future climate suggests that river flow from the basin could be substantially increased, especially in the long term when compare to the reference period. It is not applicable to formulate precise recommendations for management of runoff in the Niger Delta region as Todd highlighted that the degree of uncertainty in future projections of river flow is consider as a constrained towards developing applicable adaptation activities. The rationale behind this work is the need to understand in clear terms the climate change threats on the Niger Delta region; this will form a practical basis for developing adaptation strategies to manage future climate risks.