我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • 学术钥匙
  • 期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Molecular Analysis of Biofield Treated Eggplant and Watermelon Crops

Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Mayank Gangwar and Snehasis Jana

Eggplant and watermelon, as one of the important vegetative crops have grown worldwide. The aim of the present study was to analyze the overall growth of the two inbreed crops varieties after the biofield energy treatment. The plots were selected for the study, and divided into two parts, control and treated. The control plots were left as untreated, while the treated plots were exposed with Mr. Trivedi’s biofield energy treatment. Both the crops were cultivated in different fields and were analyzed for the growth contributing parameters as compared with their respective control. To study the genetic variability in both plants after biofield energy treatment, DNA fingerprinting was performed using RAPD method. The eggplants were reported to have uniform colored, glossy, and greener leaves, which are bigger in size. The canopy of the eggplant was larger with early fruiting, while the fruits have uniform shape and the texture as compared with the control. However, the watermelon plants after the biofield treatment showed higher survival rate, with larger canopy, bright and dark green leaves compared with the untreated plants. The percentage of true polymorphism observed between control and treated samples of eggplant and watermelon seed samples were an average value of 18% and 17%, respectively. Overall, the data suggest that Mr. Trivedi’s biofield energy treatment has the ability to alter the plant growth rate, and can be utilized in better way as compared with the existing agricultural crop improvement techniques to improve the overall crop yield.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。