国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Molecular Cloning, Characterization, and Expression Analysis of Flavanone 3-Hydroxylase (F3H) Gene during Muscadine Grape Berry Development

Jasmine Hall, Anthony Ananga, Vasil Georgiev, Joel Ochieng, Ernst Cebert and Violetka Tsolova

Flavonoids are natural antioxidants that include the groups of notable pigments such as anthocyanins and proanthocyanidins. Flavanone 3-Hydroxylase (F3H) is a key enzyme needed for the biosynthesis of flavonoids, the main ingredients of muscadine grape extracts. This study reports the first successful isolation, cloning and characterization of F3H gene from Vitis rotundifolia Michx. The full length cDNA of V. rotundifolia F3H gene (designated as VrF3H) had an open reading frame (ORF) of 1081 bp encoding 364 amino acids with a calculated molecular mass of 40.8kDa as well as an isoelectric point of 5.60. Comparative and in silico analyses revealed that the cloned VrF3H from muscadine grapes has high identity with F3H from other plant species. The deduced VrF3H protein showed similarities with other available plant F3H proteins, and the conserved amino acids ligating ferrous iron and residues participating in 2-oxo-glutarate binding were found in similar positions comparable to other F3Hs. Furthermore, three-dimensional structure modeling showed that F3H protein had the enzyme core consisting of β-sheet, a typical structure shared by all 2-oxoglutarate-dependent dioxygenases including F3Hs. Phylogenetic tree analysis indicated that VrF3H belongs to the Vitis F3H cluster. VrF3H transcripts were found to be abundantly expressed in the in-vitro red cells, véraison and physiologically mature red berries, but not expressed in the skins of the green berries. The isolation and characterization of VrF3H gene will enable further study in the role of VrF3H gene in the biosynthesis of flavonoids in V. rotundifolia.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。