国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Next generation industrial biocatalysts: Concentrating and live cells on surfaces or in flexible biocomposite materials to intensify reactivity

Michael C Flickinger

Model systems investigated by our group using bacteria, yeast, cyanobacteria, and algae have shown that nanoporous adhesive biocoatings and flexible biocomposite materials (microbial paper) can concentrate and stabilize live cells for 1,000 of hours, intensify biocatalysts, and reduce water use for large scale bioprocesses. Biocoatings can be generated by industrial coating, ink-jet printing, aerosol delivery, and fiber wet-lay methods followed by controlled drying. Generation of waterborne adhesive wet adhesion and nanoporosity with microfluidic networks surrounding the embedded cells are a function of arresting polymer particle coalescence during drying. Nanoporosity is critical to preserve cell viability. A second key technology is lyoprotection during drying by the addition of lyoprotectants or cellular engineering for cells that are not naturally desiccation tolerant. Model systems have demonstrated the sustained reactivity of cells that carryout photosynthesis, liquid or gaseous carbon capture/recycling, generate oxygen, bio-sense, are vaccine substrates, or chiral bioconversions - all can be dried, rehydrated and remain active. Biocomposites are now being investigated to engineer multi-layer biomimetic leaves combining different types of photosynthetic cells that could exceed the carbon capture reactivity of natural leaves, reactive architectural coatings that respond to sunlight or pollutants, and for processing large volumes of carbon containing gases. Live cells embedded in or on the surface of paper can use thin liquid films for gas-liquid mass transfer without generating bubbles. Enhanced mass transfer with reduced energy input has been demonstrated using thin falling liquid films over rough paper in a prototype falling film bioreactor (FFBR). A FFBR could dramatically reduce both energy and water use to process waste gas to chemicals. Dry stabilization of live cells will enable centralized biocatalyst manufacture, elimination of the cold chain in transporting concentrated cells or vaccines, and modular continuous manufacturing. Future development will lead to the waterborne coating, specialty paper, and nonwoven materials industries expanding the functionality of paints, inks and composite materials by incorporating engineered live cells.