国际标准期刊号: 2157-7617

地球科学与气候变化杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 国际农业与生物科学中心 (CABI)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 普罗奎斯特传票
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Northern Hemisphere Snow Variations with Season and Elevation Using GIS and AMSR-E Data

Mukesh Singh Boori* and Ralph R. Ferraro

Seasonal snow cover and properties in the Northern Hemisphere(NH) was examined in this study using AMSR-E multispectral passive microwave satellite derived Snow Water Equivalent (SWE) and the Digital Elevation Model (DEM) for the different seasons (January, April, July and October months) from 2007 to 2011. The methodology involves conversion of satellite SWE data into 6 snow classes, computation of NDSI, determination of the boundary between snow classes from spectral response data and threshold slicing of the image data. Accuracy assessment of AMSR-E snow products was accomplished using Geographic Information System (GIS) techniques. The coldest month has all six snow type classes due to snow pack growth whereas the summer months only contain residual snow at the highest elevations. Sharp season-to-season differences were noted. The final results show the greatest snow cover extent in January whereas total snow in April is 60%, July 3% and in October near to 25%. In terms of inter-seasonal variations during the study period, the minimum (1.53 million km2) snow cover extent was observed in July 2008 and the maximum (60.0 km2) in January 2010. In terms of elevation, the maximum snow extent exists between 0 to 2000 m in winter and near to 5000 m in summer. Finally, this study shows how satellite remote sensing can be useful for the long-term observation of the intra and inter-annual variability of snowpacks in rather inaccessible regions and providing useful information on a critical component of the hydrological cycle, where the network of meteorological stations is deficient.