国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Novel Approaches to avoid Microbial Adhesion onto Biomaterials

Lígia R. Rodrigues

Infections resulting from microbial adhesion to biomaterial surfaces have been observed on nearly all medical devices with severe economic and medical consequences [1]. Biofilm infections, mainly due to their antimicrobial resistance, pose a number of clinical challenges, including disease, chronic inflammation, and rapidly acquired antibiotic resistance. Independently of the superiority of the implant, virtually all medical devices are prone to microbial colonization and infection. Examples of such devices include prosthetic heart valves, orthopaedic implants, intravascular catheters, artificial hearts, left ventricular assist devices, cardiac pacemakers, vascular prostheses, cerebrospinal fluid shunts, urinary catheters, voice prostheses, ocular prostheses and contact lenses, and intrauterine contraceptive devices. A large amount of research to eliminate or reduce infections by developing anti-infective and anti-adhesive devices has been encouraged as a result of the significant resistance of biofilms to conventional antibiotic therapies. These improved devices may be produced by either mechanical design alternatives; physicochemical modification of the biomaterial surface (e.g. biosurfactants, plasma, atom transfer radical polymerization, brushes); anti-infective agents bound to the surface of the material (e.g. biosurfactants, silver, quaternary ammonium compounds, synthetic antibiotics); or release of toxic agents into the adjacent surroundings (e.g. chlorhexidine, antibiotics) [2,3]. The success of the mechanical design alternatives has been residual and with limited applicability [2]. Furthermore, the effectiveness of coatings designed to reduce adhesion by modification of the surface properties has also been reduced and greatly dependent on the bacterial species. Surfaces modified with poly(ethylene glycol) [4], poly(ethylene oxide) brushes [5], and hydrophilic polyurethanes [6], among many others, have been reported. Additionally, surface-bounded anti-infective agents are only toxic to the initial wave of incoming bacteria and provide little residual effects once layers of dead cells accumulate, which are also inflammatory.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。