国际标准期刊号: 2155-6199

生物修复与生物降解杂志

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 研究圣经
  • 中国知网(CNKI)
  • 乌尔里希的期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 米亚尔
  • ICMJE
分享此页面

抽象的

Oil Recovery From Fuel Oil Storage Tank Sludge Using Biosurfactants

Tânia M. S. Lima, Andréia F. Fonseca, Bruna A. Leão, Ann H. Mounteer, Marcos R. Tótola and Arnaldo C. Borges

The petroleum industry generates large amounts of solid and semisolid wastes known as oily sludges. The composition of oily sludge varies due to the large diversity in the quality of crude oils, differences in the processes used for oil–water separation, leakages during industrial processes, and also mixing with the existing oily sludge. Usually, the oily sludge contains water, sand, oils, grease, organic compounds, chemical elements, and metals. Those sludges can be generated in several steps of the petroleum production and refining, such as in oil/water separation steps and in the bottom of tanks. The accumulation of oily residues in petroleum industry poses a serious environmental problem. The purpose of this work was evaluate an alternative process to removal of oily sludges through the use of biosurfactants to reduce the viscosity and promote formation of oil/water emulsions making sludge pumping easier and permitting crude oil recovery after breaking the emulsion. Five bacterial isolates were selected for their biosurfactant production potential after screening microorganisms recovered from oil-contaminated sites. Supernatants obtained from autoclave cell suspensions (hereby referred to as autoclaved-supernatant) were mixed with oily sludge collected from fuel oil storage tanks to a final concentration of 0.01%, in order to separate the oil from the inert material. The process proved to be highly efficient for oil recovery, and resulted in up to 95% reduction in sludge volume. The use of cell-free supernatant medium obtained from biosurfactant-producing bacterial strains to treat oily sludges may be an economically and environmentally viable technology, considering the small volume of microbial culture required for the treatment.