我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 在线访问环境研究 (OARE)
  • 打开 J 门
  • 学术钥匙
  • 期刊目录
  • 访问全球在线农业研究 (AGORA)
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 普布隆斯
  • 欧洲酒吧
分享此页面

抽象的

Optical Fluorescence Diagnostic of Wheat Leaf Rust with Laser Scanning Confocal Microscopy

Firdous S

Wheat is the most important grain crop and food source worldwide. The management of diseases and early detection of pathogens is a crucial step in diagnosis programs in wheat. In the primary stage, the symptoms of rust fungus are difficult to identify with visual monitoring and other conventional techniques. In this study, we intended to investigate the early stage leaf rust in wheat crop produced through rust fungus using light fluorescence from laser scanning confocal microscopy (LSCM). The leaf rust and normal samples were analyzed with an excitation of 488 nm wavelength of Ar+ laser without any marker or photosensitizer. The small dark pores instead of stomata appears in leaf due to fungus infection and can be observed after two week of leaf tillering. These spots are orange or brown in the beginning and become black, when plants reach maturity. In recent study, the potential of non-invasive techniques for the detection of plant diseases are demonstrated for the development of a rapid and less complex early stage detection procedure that can be utilized to evaluate the infection structures during fungus infection of wheat. The newly developed rapid procedure will be helpful for early stage detection and management fungal infection before proper development during wheat interaction.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。