开放获取期刊获得更多读者和引用
700 种期刊 和 15,000,000 名读者 每份期刊 获得 25,000 多名读者
Alhabshan Fahad
Tool wears directly affect the quality of product and service life of tool. This paper proposes a machine visionbased measurement method for chisel edge wear of drills. Firstly, the full contour of a drill is extracted by local variance threshold segmentation. Secondly, the image is enhanced by using an adaptive contrast enhancement algorithm based on bidimensional local mean decomposition (BLMD). A threshold segmentation method is proposed to extract contour of the non-worn area. A new approach of inline automatic calibration of a pixel is proposed in this work. The captured images of carbide inserts are processed, and the segmented tool wear zone has been obtained by image processing. The vision system extracts tool wear parameters such as average tool wear width, tool wear area, and tool wear perimeter. The results of the average tool wear width obtained from the vision system are experimentally validated with those obtained from the digital microscope.