国际标准期刊号: 2155-952X

生物技术与生物材料

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 研究圣经
  • 中国知网(CNKI)
  • 访问全球在线农业研究 (AGORA)
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Optimization of Lipase Catalyzed Synthesis of Nonyl Caprylate using Response Surface Methodology (RSM)

Syamsul Kamar MW, Salina MR, Siti Salhah O, Hanina MN and Mohd Basyaruddin AR

Nonyl caprylate, a citrus and rose flavor is short-chain ester with fruity notes is widely used in food, cosmetic and pharmaceutical industries. Traditionally, flavor esters are produced by chemical method or extracted from natural sources. However, with the steadily growing demand for natural flavor compounds, the biosynthesis of such esters by lipase under mild conditions has been receiving much attention for producing these valuable products. In this study, enzymatic synthesis of nonyl caprylate in solvent free system, was successfully optimized via Response Surface Method (RSM) based on 5-level, 4-variable of Central Composite RotaTable Design (CCRD). The parameters were reaction time (3-8 hours); reaction temperature (30-50°C); amount of enzyme (10-20 %, w/w) and shaking speed (100-200 rpm). The optimum condition derived via RSM for the reaction was reaction time of 6.6 hours, reaction temperature of 30.08ºC, enzyme amount of 20 % (w/w) and shaking speed of 128.7 rpm. The actual experimental yield was 90.91% under the optimum condition, which compared well with the maximum predicted value of 91.33%. Comparison of predicted and experimental values reveals good correspondence between them, implying that empirical models derived from RSM can be used to adequately describe the relationship between the factors and response in the synthesis of Nonyl Caprylate.