我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Optimizing Treatment Response Prediction in Locally Advanced Cervical Cancer Radiotherapy with Spatial and Task Attention Networks

Ozlem Erten

Cervical cancer is a significant global health concern, and advancements in radiotherapy have played a crucial role in improving treatment outcomes. Locally advanced cervical cancer poses unique challenges due to the complex interplay of anatomical structures and varying tumor responses. Recent developments in medical imaging and artificial intelligence (AI) have paved the way for innovative approaches to treatment response prediction. One such promising avenue involves the integration of Spatial and Task Attention Networks.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。